Abstract

Caspase-3 is a fundamental target for pharmaceutical interventions against a variety of diseases involving disregulated apoptosis. The enzyme is active as a dimer with two symmetry-related active sites, each featuring a Cys-His catalytic dyad and a selectivity loop, which recognizes the characteristic DEVD pattern of the substrate. Here, a molecular dynamics study of the enzyme in complex with two pentapeptide substrates DEVDG is presented, which provides a characterization of the dynamic properties of the active form in aqueous solution. The mobility of the substrate and that of the catalytic residues are rather low indicating a distinct preorganization effect of the Michaelis complex. An essential mode analysis permits us to identify coupled motions between the two monomers. In particular, it is found that the motions of the two active site loops are correlated and tend to steer the substrate toward the reactive center, suggesting that dimerization has a distinct effect on the dynamic properties of the active site regions. The selectivity loop of one monomer turns out to be correlated with the N-terminal region of the p12 subunit of the other monomer, an interaction that is also found to play a fundamental role in the electrostatic stabilization of the quaternary structure. To further characterize the specific influence of dimerization on the enzyme essential motions, a molecular dynamics analysis is also performed on the isolated monomer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.