Abstract

The Hsp70 chaperone protein system is an essential component of the protein folding and homeostasis machinery in E.Coli. Hsp70 is a three domain, 70 kDa protein which functions as an allosteric system cycling between an ADP-bound state where the three domains are loosely coupled via a flexible interdomain linker and an ATP-bound state where they are tightly coupled into a single entity. The structure-function model of this protein proposes an allosteric connection between the 45 kDa Nucleotide Binding Domain (NBD) and the 25 kDa Substrate Binding Domain (SBD) and Lid Domain which operates through the inter NBD-SBD linker. X-Ray crystallography and NMR spectroscopy have provided structures of the end states of the functional cycle of this protein, bound to ADP and ATP. We have used MD simulations to study the transitions between these end states and allosteric communication in this system. Our results largely validate the experimentally derived allosteric model of function, but shed additional light on the flow of allosteric information in the SBD + Lid. Specifically, we find that the Lid domain has a double-hinged structure with the potential for greater conformational flexibility than was hitherto expected.Communicated by Ramaswamy H. Sarma

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.