Abstract

The Fibroblast Growth Factor Receptor1 (FGFR1) kinase wields exquisite control on cell fate, proliferation, differentiation, and homeostasis. An imbalance of FGFR1 signaling leads to several pathogeneses of diseases ranging from multiple cancers to allergic and neurodegenerative disorders. In this study, we investigated the phosphorylation-induced conformational dynamics of FGFR1 in apo and ATP-bound states via all-atom molecular dynamics simulations. All simulations were performed for 2 × 2 µs. We have also investigated the energetics of the binding of ATP to FGFR1 using the molecular mechanics Poisson-Boltzmann scheme. Our study reveals that the FGFR1 kinase can reach a fully active configuration through phosphorylation and ATP binding. A 3–10 helix formation in the activation loop signifies its rearrangement leading to stability upon ATP binding. The interaction of phosphorylated tyrosine (pTyr654) with positively charged residues forms strong salt-bridge interactions, driving the compactness of the structure. The dynamic cross-correlation map reveals phosphorylation enhances correlated motions and reduces anti-correlated motions between different domains. We believe that the mechanistic understanding of large-conformational changes upon the activation of the FGFR1 kinase will aid the development of novel targeted therapeutics. Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call