Abstract

In a survey of novel interactions between an IgG1 antibody and different Fcγ receptors (FcγR), molecular dynamics simulations were performed of interactions of monoclonal antibody involved complexes with FcγRs. Free energy simulations were also performed of isolated wild-type and substituted Fc regions bound to FcγRs with the aim of assessing their relative binding affinities. Two different free energy calculation methods, Molecular Mechanical/Generalized Born Molecular Volume (MM/GBMV) and Bennett Acceptance Ratio (BAR), were used to evaluate the known effector substitution G236A that is known to selectively increase antibody dependent cellular phagocytosis. The obtained results for the MM/GBMV binding affinity between different FcγRs are in good agreement with previous experiments, and those obtained using the BAR method for the complete antibody and the Fc-FcγR simulations show increased affinity across all FcγRs when binding to the substituted antibody. The FcγRIIa, a key determinant of antibody agonistic efficacy, shows a 10-fold increase in binding affinity, which is also consistent with the published experimental results. Novel interactions between the Fab region of the antibody and the FcγRs were discovered with this in silico approach, and provide insights into the antibody-FcγR binding mechanism and show promise for future improvements of therapeutic antibodies for preclinical studies of biological drugs.

Highlights

  • As therapeutic agents, monoclonal antibodies possess key advantages over small-molecule drugs

  • The effect of the G236A substitution on the binding affinity of the monoclonal antibody with different Fcγ receptors (FcγRs) was assessed by the free energy Mechanical/Generalized Born Molecular Volume (MM/Generalized Born using Molecular Volume (GBMV)) and Bennett Acceptance Ratio (BAR) methods using the simulations of the complete antibody as well as its isolated fragment crystallizable (Fc) region

  • The calculated binding affinities are in agreement with the experiment by Richards et al using the MM/GBMV method; in both simulations, FcγRIIIa exhibits the highest overall affinity of the three receptors, FcγRIIb the lowest, while FcγRIIa is intermediate (Figure 5)

Read more

Summary

Introduction

Monoclonal antibodies possess key advantages over small-molecule drugs. These include target specificity, lower toxicity profiles, longer serum half-life and multiple cytotoxic modes of action. This versatility has led to a valuation predicted to be $137–220 billion by the end of year 2020 for the antibody drug market. With this potential of antibodies, the pharmaceutical industry is searching for ways to improve existing therapies and cutting into the future market share (Grilo and Mantalaris, 2019).

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call