Abstract
In Ti0(2) nanostructured dye-sensitized solar cells indole based organic dyes D149, D205 exhibits greater power conversion efficiency. Such organic dye molecules are easily undergone for aggregation. Aggregation in dye molecules leads to reduce electron transfer process in dye-sensitized solar cells. Therefore, anti-aggregating agents such as chenodeoxycholic acid are commonly added to organic dye solution in DSSCs. Studying aggregation of such dye molecules in the absence of semiconductors gives a detailed influence of anti-aggregating agents on dye molecules. Atomistic level of molecular dynamics (MD) simulations were performed on aggregation of indole type dye molecules D149, D205 and D205-F with anti-aggregating agent chenodeoxy cholic acid using AMBER program. The trajectories of the MD simulations were analyzed with order parameters such as radial atom pair distribution functions g(r), diffusion coefficients and root mean square deviations values. MD results suggest that addition of chenodeoxy cholic acid to dyes significantly reduces structural arrangement and increases conformational flexibility and mobility of dye molecules. The influence of semi-perfluorinated alkyl chains in indole dye molecules was analyzed. The parameters such as open-circuit voltage (V(oc)) and power conversion efficiency (η) of dye-sensitized solar cells are corroborated with flexibility and diffusion values of dye molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.