Abstract

The excess concentration of cholesterol in the bloodstream can be brought down to a safer level by utilizing a potential cholesterol-binding agent such as a carbon nanotube (CNT). Here, we have probed solvent-mediated interactions between cholesterol and CNT by performing molecular dynamics simulations and potential-of-mean force (PMF) calculations. Simulations predict favorable interactions between water-mediated cholesterol and CNT owing to strong mutual interactions between them, whereas water plays an opposing role in the association. The breakdown of PMF into its enthalpic and entropic contributions indicates that contrary to traditional entropy-driven hydrophobic association, the cholesterol encapsulation within a CNT is primarily driven by enthalpy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.