Abstract

The transformation of carbon peapods (encapsulated fullerenes in nanotubes) into double-walled nanotubes was studied using molecular dynamics simulation. The simulations reproduce the two main trends known experimentally: the production of low-defect nanotubes and the templating effect of the outer tube. The process involves a low-temperature polymerization of the fullerenes followed by higher temperature self-assembly into a tube. Modelling of this second stage is made possible by the use of the Environment-Dependent Interaction Potential, a large number of atoms and long-time annealing. Analysis shows that the outer tube acts as a container for the self-assembly process, analogous to previous simulations and experiments in which free surfaces, either external or internal, template the formation of highly ordered sp 2 phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.