Abstract
Aqueous reverse micelles, which are surfactant aggregates in nonpolar solvents that enclose packets of aqueous solution, have been widely studied experimentally and theoretically, but much remains unknown about the properties of water in the interior. The few previous molecular dynamics simulations of reverse micelles have not examined how the micelle size affects these properties. We have modeled the interior of an aqueous reverse micelle as a rigid spherical cavity, treating only the surfactant headgroups and water at a molecular level. Interactions between the interior molecules and the cavity are represented by a simple continuum potential. The basic parameters of the modelmicelle size, surface ion density, and water contentare based on experimental measurements of Aerosol OT reverse micelles but could be chosen to match other surfactant systems as well. The surfactant head is modeled as a pair of atomic ions: a large headgroup ion fixed at the cavity surface and a mobile counterion. The SPC/E model ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.