Abstract

6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the first reaction in the folate biosynthetic pathway. Comparison of its X-ray and nuclear magnetic resonance structures suggests that the enzyme undergoes significant conformational change upon binding to its substrates, especially in three catalytic loops. Experimental research has shown that even when confined by crystal contacts, loops 2 and 3 remain rather flexible when the enzyme is in its apo form, raising questions about the putative large-scale induced-fit conformational change of HPPK. To investigate the loop dynamics in a crystal-free environment, we performed conventional molecular dynamics simulations of the apo-enzyme at two different temperatures (300 and 350 K). Our simulations show that the crystallographic B-factors considerably underestimate the loop dynamics; multiple conformations of loops 2 and 3, including the open, semi-open, and closed conformations that an enzyme must adopt throughout its catalytic cycle, are all accessible to the apo-enzyme. These results revise our previous view of the functional mechanism of conformational change upon MgATP binding and offer valuable structural insights into the workings of HPPK. In this paper, conformational network analysis and principal component analysis related to the loops are discussed to support the presented conclusions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call