Abstract

Two 500-ps molecular dynamics simulations performed on the single transmembrane domain of the ErbB-2 tyrosine kinase receptor immersed in a fully solvated dilauroylphosphatidyl-ethanolamine bilayer (DLPE) are compared to vacuum simulations. One membrane simulation shows that the initial α helix undergoes a local π helix conversion in the peptide part embedded in the membrane core similar to that found in simulation vacuum. Lipid/water/peptide interaction analysis shows that in the helix core, the intramolecular peptide interactions are largely dominant compared to the interactions with water and lipids whereas the helix extremities are much more sensitive to these interactions at the membrane interfaces. Our results suggest that simulations in a lipid environment are required to understand the dynamics of transmembrane helices, but can be reasonably supplemented by in vacuo simulations to explore rapidly its conformational space and to describe the internal deformation of the hydrophobic core.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.