Abstract

The temperature profile around the moving solid–liquid interface during non-equilibrium molecular dynamics (MD) simulations of crystallization and melting is examined for HCP Mg and BCC Fe. An evident spike (valley) is found around the solid–liquid interface during solidification (melting). Considering the effect of a non-uniform temperature distribution, it is found that, if the actual interface temperature is adopted to compute the interface mobility, rather than the thermostat temperature (or the mean temperature of the whole system), the kinetic coefficient is approximately a factor of two larger than previous estimates. Although the magnitude of the kinetic coefficient is larger than the previous estimates, the crystalline anisotropies derived in the current work are consistent with earlier calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.