Abstract

Self-organization of aqueous surfactants at a planar graphite-like surface is studied by means of coarse-grain molecular dynamics simulations. The nonionic surfactant, n-alkyl poly(ethylene oxide), and water are both represented by coarse-grain models while an implicit representation is used for the graphite surface. The observed morphology of the aggregated surfactants depends on the alkyl chain length. Surfactants with a short chain form a monolayer on the graphite surface with a thickness roughly equal to that of the alkane tail. On the other hand, longer-tail surfactants form continuous hemicylinders on the surface with diameter approximately 5.0 +/- 0.5 nm, in good agreement with experimental AFM data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.