Abstract

Classical molecular dynamics simulations of the interactions of water with oxidized Pt(111) and Pt/PtCo/Pt(3)Co(111) surfaces are performed by modeling water with the CF1 central force model that allows molecular dissociation and therefore the presence of other intermediates of the oxygen reduction reaction different from atomic oxygen. It is found that the water-surface oxide interactions do not affect the overall structure of the catalyst represented by an extended periodic slab. However, such interactions are affected by changes in the electrochemical potential which are simulated by higher values of the surface and atomic oxygen charges at increased oxygen coverage. Thus, electrochemical potential as well as the presence of protons and anions products of acid dissociation define the identity and the amount of oxygen reduction reaction intermediates such as OH or H(3)O. We observe agglomerations of water molecules over regions of the surface and the presence of OH and H(3)O in their vicinity. Our simulation model is able to qualitatively reproduce features of the degradation of the catalyst surface after oxidation and reduction cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call