Abstract
Fatigue of amorphous polyethylene under low strain was simulated using molecular dynamics. The united atom approach and the Dreiding force field were chosen to describe the interaction between monomers. Molecular dynamics simulations resembling strain-controlled loading fatigue tests in tension-tension mode were performed to study the effect of the R-ratio and mean strain on the mechanical responses. Laboratory fatigue experiments in strain/displacement control were performed at room temperature, and the results were compared to the simulation results. The simulations are able to produce qualitatively similar behaviour to the experimental results, for instance, mean stress relaxation, hysteresis loops in the stress–strain curve, and change in the cyclic modulus. They also show that stress relaxation is enhanced by cyclic loading. The simulations show that cyclic loading changes the total potential energies of the system, especially the van der Waals potential. The changes in the van der Waals potential energy contribute significantly to the increasing of the stiffness of the system. Some changes in dihedral angles with lower energy configurations are observed; however, bond distances and angles do not change significantly. The chains tend to unfold slightly along the loading axis as the fatigue loading progresses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.