Abstract

Molecular-dynamics calculations were performed to simulate ion beam deposition of diamond-like carbon films. Using the computationally efficient analytical potentials of Tersoff and Brenner we are able to simulate more than 103 carbon atom impacts on {111} diamond, so that steady-state film properties can be computed and analyzed. For the Tersoff potential, we achieve sp3 fractions approximately half of the experimentally observed values. For the more refined hydrocarbon potentials of Brenner the fraction of tetrahedrally coordinated atoms is much too low, even if structures with densities close to diamond are obtained. We show, that the sp3 contents calculated with Tersoff’s potential are an artifact related to the overbinding of specific bonding configurations between three- and fourfold coordinated sites. On the other hand, we can prove, that the range for the binding orbitals represented by the cutoff function is too short in Brenner’s parametrization. If an increased C–C interaction cutoff value is chosen, we achieve a distinct improvement in modeling the sp3 content of deposited ta-C films. As a result we compute sp3 fractions which lie between 52% and 95% for the C+ ion energies E=30–80 eV and are in reasonable agreement with recent experimental studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.