Abstract

AbstractWe have investigated crystal growth and defect formation processes during solid phase epitaxy (SPE) of Si in the [001] direction based on molecular dynamics (MD) simulations using the Tersoff potential. From the Arrhenius plot of the growth rates obtained by MD simulations, we have found that the activation energy of SPE at lower temperatures is in good agreement with the experimental value, approximately 2.7 eV, while it becomes lower at higher temperatures. This can be attributed to the difference in the amorphous/crystalline (a/c) interface structure. In the low temperature region, the a/c interface is essentially (001) and the rate-limiting step is two-dimensional nucleation on the (001) a/c interface. On the other hand, the a/c interface becomes rough due to (111) facets formation in the high temperature region and the rate-limiting step is presumably a diffusion process of Si to be trapped at the kink sites associated with these facets. Defect formation is found to be initiated by 5-membered rings created at the a/c interface. These mismatched configurations at the interface give rise to (111) stacking faults during further SPE growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.