Abstract
Molecular dynamics (MD) simulations are employed in this paper to study the behavior of single-layer and rotated double-layer graphene sheets under a high velocity impact. The AIREBO force field is used for MD simulations. Stress wave propagation is investigated, and cone-wave and axial-wave velocities are determined. The coefficient of restitution for the double-layer graphene sheet is calculated at different impact incident angles and velocities. Impact and rebound kinetic energy of projectile under the impact simulation of different rotation angles double-layer graphene sheet is monitored. High cone-wave and axial-wave velocities show that single-layer and double-layer graphene sheets have potential applications in impact protection materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.