Abstract

While Li-ion cells show outstanding electrochemical performance, their poor thermal transport characteristics result in reduced performance as well as significant safety concerns. The heterogeneous interface between cathode and separator plays a vital role in the process of thermal conduction in a Li-ion cell. Recent experiments have shown that the cathode-separator interfacial thermal resistance contributes significantly to total thermal resistance within the cell. In this paper, thermal conductance across the cathode-separator interface is calculated using molecular dynamics (MD) simulations with IFF-CVFF force field. Thermal transport in a pristine heterogeneous interface as well as when bridged with 3-Aminopropyl triethoxysilane (APTES), n-Butyl trimethoxysilane (nBTMS) and 3-Mercaptopropyl trimethoxysilane (MPTMS) molecules is computed. It is shown that molecular bridging at the interface results in up to 250% improvement in interfacial thermal conductance for the APTES case, which is consistent with recent experimental data. These results quantify the key role of the cathode-separator interface in thermal transport within the Li-ion cell, as well as the potential improvement in interfacial thermal transport by molecular bridging. The techniques and results discussed here may help downselect molecular species for interfacial thermal transport enhancement in Li-ion cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.