Abstract

Bioavailability of oral drugs often depends on how soluble the active pharmaceutical ingredient is in the fluid present in the small intestine. For efficient drug discovery and development, computational tools are needed for estimating this drug solubility. In this paper, we examined human intestinal fluids collected in the fed state, with coarse-grained molecular dynamics simulations. The experimentally obtained concentrations in aspirated duodenal fluids from five healthy individuals were used in three simulation sets to evaluate the importance of the initial distribution of molecules and the presence of glycerides in the simulation box when simulating the colloidal environment of the human intestinal fluid. We observed self-assembly of colloidal structures of different types: prolate, elongated, and oblate micelles, and vesicles. Glycerides were important for the formation of vesicles, and their absence was shown to induce elongated micelles. We then simulated the impact of digestion and absorption on the different colloidal types. Finally, we looked at the solubilization of three model compounds of increasing lipophilicity (prednisolone, fenofibrate, and probucol) by calculating contact ratios of drug-colloid to drug-water. Our simulation results of colloidal interactions with APIs were in line with experimental solubilization data but showed a dissimilarity to solubility values when comparing fasted-/fed-state ratios between two of the APIs. This work shows that coarse-grained molecular dynamics simulation is a promising tool for investigation of the intestinal fluids, in terms of colloidal attributes and drug solubility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.