Abstract

Tuning of surface properties plays an important role in applications ranging from material engineering to biomedicine/chemistry. The interactions of chains grafted to a solid support and exposed to a matrix of chemically identical chains represent an intriguing issue. In this work, the behavior of poly(ethylene oxide) (PEO) chains grafted irreversibly onto an amorphous silica and immersed in the matrix of free PEO chains of different polymerization degree is studied using molecular dynamics simulations. The density distributions of grafted and free PEO chains, the height of the grafted layer, overlap parameters, and orientation order parameters depend not only on the grafting density but also on the length of free chains which confirm the entropic nature of the interactions between the grafted and free chains. In order to achieve a complete expulsion of the free chains from the grafted layer, a grafting density as high as 3.5 nm(-2) is necessary. Free PEO chains of 9 monomers leave the grafted layer at lower grafting densities than the longer PEO chains of 18 monomers in contrast with the theoretical predictions. The height of the grafted layer evolves with the grafting density in the presence of free chains in qualitative agreement with the theoretical phase diagram.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.