Abstract

Three-dimensional molecular dynamics simulations using the Tersoff potential are conducted to investigate the nanoindentation process of monocrystalline germanium (Ge). It is found that a phase transformation from fourfold-coordinated diamond cubic phase (Ge-I) to sixfold-coordinated β-tin phase (Ge-II) occurs during the nanoindentation process. The simulation results suggest that a pressure-induced phase transformation instead of dislocation-assisted plasticity is the dominant deformation mechanism of monocrystalline Ge thin films during the nanoindentation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call