Abstract

AbstractIn previous work, molten magnesium chloride has been investigated using first‐principles molecular dynamics (FPMD) simulations based on density functional theory (DFT). However, such simulations are computationally intensive and therefore are restricted in terms of simulated size and time. In this work, a machine learning‐based deep potential (DP) is trained to accelerate the molecular dynamics simulation of molten magnesium chloride. The trained DP can accurately describe the energies and forces with the prediction errors in energy and force being 1.76 × 10−3 eV/atom and 4.76 × 10−2 eV Å−1, respectively. Applying the deep potential molecular dynamics (DPMD) approach, simulations can be performed with more than 1000 atoms, which is infeasible for FPMD simulations. Additionally, the partial radial distribution functions, angle distribution functions, densities, and self‐diffusion coefficients predicted by DPMD simulations are also in reasonable agreement with FPMD or experimental results. This work shows that the DP enables higher efficiency and similar accuracy relative to DFT, exhibiting a bright application prospect in modeling molten salt systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.