Abstract

Molecular dynamics simulations have been carried out to study decomposition of methane hydrate at different cage occupancies. The decomposition rate is found to depend sensitively on the hydration number. The rate of the destruction of the cages displays Arrhenius behavior, consistent with an activated mechanism. During the simulations, reversible formation of partial water cages around methane molecules in the liquid was observed at the interface at temperatures above the computed hydrate decomposition temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.