Abstract

Molecular dynamics simulations, using the collision dynamics method, were carried out for hydrated bilayers of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (18:0/18:1 omega 9cis PC, SOPC) and 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphatidylcholine (18:0/22:6 omega 3cis PC, SDPC). The simulation cells of the two bilayers consisted of 96 SOPC (or SDPC) molecules and 2304 water molecules: 48 lipid molecules per layer and 24 H2O molecules per lipid. The water was modeled by explicit TIP3P water molecules. The C-H bond-order-parameter -S(CH) profiles of the hydrocarbon tails, the bond orientation distribution functions and the root-mean-square values of the positional fluctuations of the lipid chain carbons were calculated. Simulation results are compared to the available experimental data and to other computer investigations of these lipid molecules. Several results of molecular-level self-consistent field calculations of these bilayers are also presented. Both theoretical methods reveal the same main characteristic features of the order-parameter profiles for the given bilayers. Some aspects of the physical properties of unsaturated lipids and their biological significance are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.