Abstract

The parameters of the polarizable force field used for molecular dynamics simulations of Li diffusion in high-concentration lithium bis(trifluoromethanesulfonyl)amide (Li[TFSA]) sulfone (sulfolane, dimethylsulfone, ethylmethylsulfone, and ethyl-i-propylsulfone) solutions were refined. The densities of the solutions obtained by molecular dynamics simulations reproduced well the experimental values. The calculated concentration, temperature, and solvent dependencies of self-diffusion coefficients of ions and solvents in the mixtures well reproduce the experimentally observed dependencies. Ab initio calculations show that the intermolecular interactions between Li ions and four sulfones are not largely different. Conformational analyses show that sulfolane can change the conformation more easily owing to lower barrier height for pseudorotation compared to the rotational barrier heights of diethylsulfone and ethylmethylsulfone. Molecular dynamics simulations indicate that the easy conformation change of solvent affects the rotational relaxation of the solvent and the diffusion of Li ion in the mixture. The easy conformation change of sulfolane is one of the causes of faster diffusion of Li ion in the mixture of Li[TFSA] and sulfolane compared to the mixtures of smaller dimethylsulfone and ethylmethylsulfone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.