Abstract

Molecular dynamics simulations are applied to investigate the cylindrical polyelectrolyte brushes in monovalent and multivalent salt solutions. By varying the salt valence and concentration, the brush thickness, shape factor of grafted chains, and distributions of monomers and ions in the solutions are studied. The simulation results show that the single osmotic pressure effect in the brush leads to changes in conformation in the presence of monovalent salt, while the ion exchange effect induces the collapse of the brushes in the multivalent salt solutions. Furthermore, the snapshots combined with the distributions of the end-monomers and the mean bond angles demonstrate a nonuniform stretching picture of the grafted chains, which is different with the chains tethered on the planar surface. The charge ratios between the ions trapped in the brush and the monomers are also calculated to elucidate the details of ion exchange process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.