Abstract
Fundamental understanding of specific interactions of human islet amyloid polypeptide (hIAPP) with cell membrane is critical for elucidating the underlying pathogenesis of type II diabetes mellitus (T2DM). Membrane cholesterol is known to regulate membrane functions and properties, but its exact role in driving hIAPP-membrane interactions still remains controversial. In this work, we computationally investigated the concentration effect of cholesterol on the adsorption, orientation, and surface interaction of hIAPP oligomers on POPC bilayers containing different amounts of cholesterol (χ = 0, 20, and 40 mol %). Collective MD simulations consistently showed that an increased cholesterol level modulated the structure and dynamics of POPC bilayer, leading to an increase of bilayer thickness, lipid packing order, and surface hydrophobicity but a decrease of lipid mobility. Cholesterol-induced bilayer changes further caused hIAPP oligomer to more preferentially bind to POPC bilayer in the presence of cholesterol via C-terminal residues, in contrast to weak or no binding of hIAPP oligomer on pure POPC bilayers. The cholesterol-enhanced hIAPP-membrane binding is mainly contributed by electrostatic interactions between C-terminal residues and lipid head groups, which may explain the rapid adsorption and aggregation of hIAPP in the presence of cholesterol in cell membranes. This computational work provides some insights into drug development and therapeutic strategies for T2DM by considering cholesterol effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.