Abstract

Molecular dynamics simulations were carried out to study the structural and transport properties of carbon dioxide, methane, and their mixture at 298.15 K in Na-montmorillonite clay in the presence of water. The simulations show that the self-diffusion coefficients of pure CO2 and CH4 molecules in the interlayers of Na-montmorillonite decrease as their loading increases, possibly because of steric hindrance. The diffusion of CO2 in the interlayers of Na-montmorillonite, at constant loading of CO2, is not significantly affected by CH4 for the investigated CO2/CH4 mixture compositions. We attribute this to the preferential adsorption of CO2 over CH4 in Na-montmorillonite. The presence of adsorbed CO2 molecules, at constant loading of CH4, very significantly reduces the self-diffusion coefficients of CH4, and relatively larger decreases in those diffusion coefficients are obtained at higher loadings. The preferential adsorption of CO2 molecules to the clay surface screens those possible attractive surface si...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.