Abstract
Molecular dynamics simulations were used to study the structure of calcium silicate intergranular films (IGFs) formed between the basal planes of silicon nitride crystals. A multibody potential was used to describe the interactions between ions. Samples with different film thickness and CaO contents were studied. Epitaxial adsorption of Si and O atoms from the intergranular films onto N and Si, respectively, in the crystal surface was observed. This epitaxial order induced a structural order into the nominally amorphous IGF that decreased as a function of distance from the IGF/crystal interface. A higher concentration of strained siloxane bonds was observed at the IGF/crystal interface in comparison to the amorphous interior of the IGF. While Ca ions were observed to segregate to the IGF/crystal interface in simulations of calcium silicate glass IGFs between alumina crystals, no segregation of calcium to the first adsorbed layer on the nitride was found in these simulations using silicon nitride crystals. Planar alignment of Ca ions parallel to the IGF/crystal interface occurred with either the largest concentrations of CaO or with the thinnest IGFs studied here. This alignment creates localized nonbridging oxygen that would affect the stability of the IGF/crystal system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.