Abstract

Biotin carboxylase catalyzes the ATP-dependent carboxylation of biotin and is one component of the multienzyme complex acetyl-CoA carboxylase that catalyzes the first committed step in fatty acid synthesis in all organisms. Biotin carboxylase from Escherichia coli, whose crystal structures with and without ATP bound have been determined, has served as a model system for this component of the acetyl-CoA carboxylase complex. The two crystal structures revealed a large conformational change of one domain relative to the other domains when ATP is bound. Unfortunately, the crystal structure with ATP bound was obtained with an inactive site-directed mutant of the enzyme. As a consequence the structure with ATP bound lacked key structural information such as for the Mg2+ ions and contained altered conformations of key active-site residues. Therefore, nanosecond molecular dynamics studies of the wild-type biotin carboxylase were undertaken to supplant and amend the results of the crystal structures. Specifically, the protein-metal interactions of the two catalytically critical Mg2+ ions bound in the active site are presented along with a reevaluation of the conformations of active-site residues bound to ATP. In addition, the regions of the polypeptide chain that serve as hinges for the large conformational change were identified. The results of the hinge analysis complemented a covariance analysis that identified the individual structural elements of biotin carboxylase that change their conformation in response to ATP binding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.