Abstract

Amyloid fibrils play causal roles in the pathogenesis of amyloid-related degenerative diseases such as Alzheimer's disease, type II diabetes mellitus, and the prion-related transmissible spongiform encephalopathies. The mechanism of fibril formation and protein aggregation is still hotly debated and remains an important open question in order to develop therapeutic method of these diseases. However, traditional molecular biological and crystallographic experiments could hardly observe atomic details and aggregation process. Molecular dynamics (MD) simulations could provide explanations for experimental results and detailed pathway of protein aggregation. In this review, we focus on the applications of MD simulations on several amyloidogenic protein systems. Furthermore, MD simulations could help us to understand the mechanism of amyloid aggregation and how to design the inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.