Abstract

Eight molecular dynamics simulations of a double crystal unit cell of ubiquitin were performed to investigate the effects of simulating at constant pressure and of simulating two unit cells compared to a single unit cell. To examine the influence of different simulation conditions, the constant-pressure and constant-volume simulations were each performed with and without counterions and using two different treatments of the long-range electrostatic interactions (lattice-sum and reaction-field methods). The constant-pressure simulations were analyzed in terms of unit cell deformation and accompanying protein deformations. Energetic and structural properties of the proteins in the simulations of the double unit cell were compared to the results of previously reported one-unit-cell simulations. Correlation between the two unit cells was also investigated based on relative translational and rotational movements of the proteins and on dipole fluctuations. The box in the constant-pressure simulations is found to deform slowly to reach convergence only after 5-10 ns. This deformation does not result from a distortion in the structure of the proteins but rather from changes in protein packing within the unit cell. The results of the double-unit-cell simulations are closely similar to the results of the single-unit-cell simulations, and little motional correlation is found between the two unit cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.