Abstract

We performed molecular dynamics (MD) simulations for the responses of single crystal (SC) and nanotwinned (nt) diamond films under nanoindentation, respectively, aimed to uncover the effects of twin boundary (TB) and twin thickness (δ) on hardness (H) and the corresponding deformation mechanisms. We found the Hall-Petch type relationship between H and δ. We also found that the inelastic deformation of SC-diamond under indentation could mainly be attributed to the nucleation and propagation of 〈110〉{111} dislocation loops. It showed that dislocation blockage and pile up at the TBs may induce additional hardening of the nt-diamond, while the softening of the material could be attributed to: (i) the formation and movement of the dislocation loops parallel with the surface, and (ii) the breakage of TBs, which may serve as new sites for dislocations nucleation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.