Abstract

The NaCl–KCl–ZnCl2 ternary system is examined and modeled using the CALPHAD methodology in conjunction with molecular dynamics (MD) simulations. In particular, MD simulations are used for calculating liquid enthalpies of mixing as a function of composition for the ternary and its binary sub-systems. In addition, key structural features are obtained from MD that is then used for informing the employed two-sublattice ionic liquid model (Na+1, K+1: Cl−1, ZnCl2), which describes the ternary liquid phase. The structure of the simulated liquid systems show that Zn+2 cations primarily exhibit 4-fold coordination in addition to a smaller percentage of 5-fold followed by 3-fold coordination; in contrast, the coordination of both Na+ and K+ cations are distributed between 2- and 4-fold states. The optimized self-consistent thermodynamic model parameters show good agreement with MD data obtained in this work and available experimental literature data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.