Abstract

The proper folding of a protein is essential for its biological functions. Thermal denaturation of protein structure has been used as an essential tool to understand the unfolding mechanism and measure thermodynamic stability. New technologies have made it feasible to heat proteins using femtosecond laser technology and nanoparticle-targeting methods locally. It is crucial to comprehend how quickly proteins can unfold or lose their function at high temperatures. Protein folding and unfolding have been widely modelled using molecular dynamics (MD) simulations. MD simulations provide information about protein folding that is otherwise impractical through experimental approaches. Techniques like targeted molecular dynamics (TMD) simulations and acid-thermal denaturation correspond to varying degrees of success with experimental observations. These simulations, utilized in tandem with experiments, provide crucial information on the protein folding mechanism. Because of recent computer hardware and software improvements, it is now possible to include a broad range of temperature factors in thermal denaturation studies. In this chapter, we dwell on these details and discuss the thermal unfolding of proteins and their applications. Various computational methods and tools and their uses in protein folding/unfolding studies are described. We also cover an overview of limitations, significant contributions, and recent advancements in MD simulation approaches to study protein folding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.