Abstract

Cosine oscillation electric field could be a promising option to fasten methane hydrate formation in pure water. Molecular dynamics simulation was employed to examine the performance of cosine oscillation electric field in the intensity range of (0.5–2.0) V•nm−1 and frequency range of (0.2–1.0) THz. The hydrate growth time and the hydrate growth rate were firstly defined and obtained by calculating the four-body structure order parameter for different systems at different x positions. The results showed that the added electric field with appropriate parameters could promote methane hydrate formation significantly, represented by shorter hydrate growth time and higher hydrate growth rate. In all studied systems, system with 1.5 V•nm−1 intensity and 0.4 THz field intensity was recommended for fast hydrate growth rate, which could be three times higher than that of system without electric field. It was noteworthy that there was an electric field frequency boundary, lower than which the effect of cosine oscillation electric field on methane hydrate formation could be totally different. The electric field frequency boundary for systems with different electric field intensities was identified and fitted with two exponential growth functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call