Abstract

Molecular dynamics simulations were conducted to investigate the dynamic properties of melts of nonconcatenated ring polymers and compared to melts of linear polymers. The longest rings were composed of N = 1600 monomers per chain which corresponds to roughly 57 entanglement lengths for comparable linear polymers. The ring melts were found to diffuse faster than their linear counterparts, with both architectures approximately obeying a D ∼ N(-2.4) scaling law for large N. The mean-square displacement of the center-of-mass of the rings follows a sub-diffusive behavior for times and distances beyond the ring extension [linear span]R(g)(2)[linear span], neither compatible with the Rouse nor the reptation model. The rings relax stress much faster than linear polymers, and the zero-shear viscosity was found to vary as η(0) ∼ N(1.4 ± 0.2) which is much weaker than the N(3.4) behavior of linear chains, not matching any commonly known model for polymer dynamics when compared to the observed mean-square displacements. These findings are discussed in view of the conformational properties of the rings presented in the preceding paper [J. D. Halverson, W. Lee, G. S. Grest, A. Y. Grosberg, and K. Kremer, J. Chem. Phys. 134, 204904 (2011)].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call