Abstract

The adsorption behavior inside kaolinite mesopores of aqueous solutions of various salts and additives is investigated using Molecular Dynamics simulations. In particular, we examine the various combinations of water + salt, water + additive, and water + salt + additive mixtures, where the salts are NaCl, CsCl, SrCl2, and RaCl2 and the additives are methanol and citric acid. Citric acid is modeled in two forms, namely, fully protonated (H3A) and fully deprotonated (A3–), the latter being prevalent in neutral pH conditions, in accordance with the kaolinite structure employed. The force fields used for the individual system components include CLAYFF for the kaolinite mesopores, SPC/E for water, parameters optimized for the SPC/E water model based on hydration free energies (HFE) for ions, and general Amber force field (GAFF) for the additives. The spatial distributions along the kaolinite pore are delineated and reveal the preferential adsorption behavior of the various species with respect to the gibbsite ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call