Abstract

Molecular dynamics simulation has been performed in the present study for a Lennard-Jones (LJ) fluid in Poiseuille flow to examine the Theological behaviour of ultra-thin lubricating films. The results show that as two solid walls continuously approach each other, the effective viscosity of the confined fluid increases and goes towards divergence; the critical pressure of the phase transition declines as the film thickness reduces; when the separation exceeds ten molecular layers, however, the pressure curve slopes gently and tends to an asymptotic value-the bulk transition pressure of the lubricant; and an in-plane ordering structure will develop in the film, which originates from the wall-fluid interface and grows towards the middle of the film as the system pressure increases. It is concluded that the rheological performance of the lubricant may become film thickness dependent and a solid-liquid transition may be induced when the film is molecularly thin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call