Abstract

A molecular dynamics simulation has been performed to investigate the thermal expansivity, isothermal compressibility, heat capacity and thermal conductivity of strontium titanate. The potential model captures the ionic and covalent characteristics of strontium titanate well. The parameters of the model were derived by fitting against the experimental lattice parameters. With these fitted parameters, we then evaluated the variations of lattice, thermal expansion coefficient, isothermal compressibility, heat capacity and thermal conductivity as a function of temperature from room temperature up to 2000K, and pressure from ambient pressure up to 20.3GPa. The thermal conductivity calculations were performed using non-equilibrium molecular dynamics method, and corrections for finite size effect were made. The simulation results are in good agreement with the experimental data and the theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.