Abstract

We propose a computer model to describe the synthesis of protein-like copolymers in a polar solvent via irreversible polymerization of hydrophobic and hydrophilic monomers with simultaneous globule formation. In the model, growing chain macroradical, polymerizing monomers, and the preferential absorption of hydrophobic monomers in the core of the globule are taken into account explicitly. The effect of monomer concentrations and reaction rate on the conformational properties and primary copolymer sequences is investigated. We find that, under certain conditions, the resulting copolymers can form protein-like globules with hydrophobic core wrapped in a hydrophilic envelope. Also, a gradient structure of primary sequences of the copolymers is revealed. Such sequences are formed due to both a change in the chain conformation and a continuous redistribution of comonomers between the globule and the solution in the course of the polymerization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.