Abstract
Atomistic molecular modeling has been used to study the sulfonic acid anion of poly(ethylene oxide) (PEO sulfonic acid anion) in vacuum and a polymer electrolyte system consisting of the PEO sulfonic acid anion in water. The vibrational spectra of the molecules were simulated by the local mode method and found to be in good agreement with the experimental IR and Raman spectra. The structure of PEO sulfonic acid anion was studied in vacuum and water and compared to the structure of an isolated PEO sulfonic acid in vacuum. The simulated value for the root mean square end-to-end distance for the PEO sulfonic acid anion was 22Å in vacuum and 12Å in water. The root mean square radius of gyration of the PEO sulfonic acid anion was 8.4Å in vacuum and 5.6Å in water. The PEO sulfonic acid anion was randomly coiled in water and in an extended shape in vacuum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.