Abstract

A coupled computational technique, which combines the one dimensional two-temperature model and molecular dynamics, was used to study the melting dynamics of a nanoscale aluminum film irradiated by a femtosecond laser pulse. The model is capable of providing an atomic-level depiction of fast microscale processes in metals and gives an adequate description of laser light absorption, energy transfer, and fast electron heat conduction in metals. The simulation revealed that the electron temperature, lattice temperature, and laser induced pressure of the Al film were significantly different from those of Ni and Au films. The Al film melts globally soon after laser radiation and this is different from the Ni film, which goes through a step melting process. In addition, the Al film shows a much faster melting process than the Ni and Au films because of strong electron-phonon coupling. The melting time of the Al film by an ultrafast laser pulse is consistent with recent experimental observations, which supports the assertion that the laser induced melting of an Al film is a thermal process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.