Abstract

We performed molecular dynamics simulations to investigate the effects of layer thicknesses of both crystalline and noncrystalline domains and chain tilt within the crystalline lamellae on tensile deformation mechanisms of the lamellar stack model of semicrystalline polyethylene. For equal thicknesses of crystalline and noncrystalline regions, similar stress–strain profiles were obtained with two different initial orientations of the crystal stem relative to the tensile direction. Repeated melting/recrystallization transitions were observed, at the slower strain rate of 5 × 106 s–1, characterized by oscillating stress–strain profiles. With increasing thickness of the crystalline regions, these oscillations occurred less frequently. For systems with initially tilted chain stems in the crystalline domain, decreasing the thickness of the noncrystalline region increased the number of short bridge segments in the noncrystalline region connecting the two crystalline regions and induced significant shear stresse...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.