Abstract
We present the results of a large scale computer simulation of supercooled silica. We find that at high temperatures the diffusion constants show a non-Arrhenius temperature dependence whereas at low temperature this dependence is also compatible with an Arrhenius law. We demonstrate that at low temperatures the intermediate scattering function shows a two-step relaxation behavior and that it obeys the time temperature superposition principle. We also discuss the wave-vector dependence of the nonergodicity parameter and the time and temperature dependence of the non-Gaussian parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.