Abstract

Molecular dynamics simulations were carried out to investigate the diffusive behavior of aqueous uranium species in montmorillonite pores. Three uranium species (UO22+, UO2CO3, UO2(CO3)22−) were confirmed in both the adsorbed and diffuse layers. UO2(CO3)34− was neglected in the subsequent analysis due to its scare occurrence. The species-based diffusion coefficients in montmorillonite pores were then calculated, and compared with the water mobility and their diffusivity in aqueous solution/feldspar nanosized fractures. Three factors were considered that affected the diffusive behavior of the uranium species: the mobility of water, the self-diffusion coefficient of the aqueous species, and the electrostatic forces between the negatively charged surface and charged molecules. The mobility of U species in the adsorbed layer decreased in the following sequence: UO22+>UO2CO3>UO2(CO3)22−. In the diffuse layer, we obtained the highest diffusion coefficient for UO2(CO3)22− with the value of 5.48×10−10m2s−1, which was faster than UO22+. For these two charged species, the influence of electrostatic forces on the diffusion of solutes in the diffuse layer is overwhelming, whereas the influence of self-diffusion and water mobility is minor. Our study demonstrated that the negatively charged uranyl carbonate complex must be addressed in the safety assessment of potential radioactive waste disposal systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.