Abstract

Pressure-induced structural transformation in cubic silicon carbide is studied with the isothermal-isobaric molecular-dynamics method using a new interatomic potential scheme. The reversible transformation between the fourfold coordinated zinc-blende structure and the sixfold coordinated rocksalt structure is successfully reproduced by the interatomic potentials. The calculated volume change at the transition and hysteresis are in good agreement with experimental data. The atomistic mechanisms of the structural transformation involve a cubic-to-monoclinic unit-cell transformation and a relative shift of Si and C sublattices in the 100 direction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.