Abstract

A molecular dynamics simulation of solid tin(II) fluoride nanostructures formed in internal channels of single-walled carbon nanotubes (SWCNTs) has been performed using two types of model potentials—without and with inclusion of the polarization of ions. For the potential taking into account the polarization of ions, an ordered SnF2@SWCNT structure is reproduced: in SWCNT(10, 10), it has the form of the SnF2 internal nanotube. At the same time, the SnF2@SWCNT(11,11) structure is substantially disordered (glass-like). It has been found that heating of the SnF2@SWCNT model system produces a superionic state characterized by a high mobility of fluorine ions without migration of tin ions. The model potentials disregard the covalent character of Sn-F bonds and the specific interactions of a lone electron pair of the Sn2+ ion. This makes it impossible to completely reproduce the properties of SnF2 at normal pressures. However, some characteristics of the SnF2 high-pressure modification can be reproduced if the polarization of ions is taken into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.