Abstract

The transfer properties and microscopic structures of methanol, ethanol, 1-propanol, 2-propanol, and 1-pentanol in the temperature range from 290 to 450 K and pressure range from 0.1 to 200 MPa were studied by molecular dynamics (MD) simulation through the calculation of the self-diffusion coefficients, velocity autocorrelation functions (VACF), and radial distribution function (RDF). The calculated self-diffusion coefficients conform to the experimental values on the whole, and the temperature has greater influence, which weaken with the increase of the carbon chain, on self-diffusion coefficient than pressure. The factors affecting self-diffusion coefficients were also analyzed from micro perspective by calculation of VACF and RDF, which is helpful to understand the relationship between microscopic structures of fluid and its transfer properties. This work not only provides a reliable simulation method for transfer properties of alkanols, but also provides the prediction data for design and development of chemical processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call