Abstract

The interaction of a gliding screw dislocation with stacking fault tetrahedron (SFT) in face-centered cubic (fcc) copper (Cu) was studied using molecular dynamics simulations. Upon intersection, the screw dislocation spontaneously cross slips on the SFT face. One of the cross-slipped Shockley partials glides toward the SFT base, partially absorbing the SFT. At low applied stress, partial absorption produces a superjog, with detachment of the trailing Shockley partial via an Orowan process. This leaves a small perfect SFT and a truncated base behind, which subsequently form a sheared SFT with a pair of opposite sense ledges. At higher applied shear stress, the ledges can self-heal by gliding toward an SFT apex and transform the sheared SFT into a perfect SFT. However, complete absorption or collapse of an SFT (or sheared SFT) by a moving screw dislocation is not observed. These observations provide insights into defect-free channel formation in deformed irradiated Cu.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call